Package: RAINBOWR 0.1.36
RAINBOWR: Genome-Wide Association Study with SNP-Set Methods
By using 'RAINBOWR' (Reliable Association INference By Optimizing Weights with R), users can test multiple SNPs (Single Nucleotide Polymorphisms) simultaneously by kernel-based (SNP-set) methods. This package can also be applied to haplotype-based GWAS (Genome-Wide Association Study). Users can test not only additive effects but also dominance and epistatic effects. In detail, please check our paper on PLOS Computational Biology: Kosuke Hamazaki and Hiroyoshi Iwata (2020) <doi:10.1371/journal.pcbi.1007663>.
Authors:
RAINBOWR_0.1.36.tar.gz
RAINBOWR_0.1.36.zip(r-4.5)RAINBOWR_0.1.36.zip(r-4.4)RAINBOWR_0.1.36.zip(r-4.3)
RAINBOWR_0.1.36.tgz(r-4.4-x86_64)RAINBOWR_0.1.36.tgz(r-4.4-arm64)RAINBOWR_0.1.36.tgz(r-4.3-x86_64)RAINBOWR_0.1.36.tgz(r-4.3-arm64)
RAINBOWR_0.1.36.tar.gz(r-4.5-noble)RAINBOWR_0.1.36.tar.gz(r-4.4-noble)
RAINBOWR_0.1.36.tgz(r-4.4-emscripten)RAINBOWR_0.1.36.tgz(r-4.3-emscripten)
RAINBOWR.pdf |RAINBOWR.html✨
RAINBOWR/json (API)
NEWS
# Install 'RAINBOWR' in R: |
install.packages('RAINBOWR', repos = c('https://kosukehamazaki.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/kosukehamazaki/rainbowr/issues
- Rice_Zhao_etal - Rice_Zhao_etal:
Last updated 8 months agofrom:8d28eb0b7b. Checks:OK: 1 WARNING: 8. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 16 2024 |
R-4.5-win-x86_64 | WARNING | Nov 16 2024 |
R-4.5-linux-x86_64 | WARNING | Nov 16 2024 |
R-4.4-win-x86_64 | WARNING | Nov 16 2024 |
R-4.4-mac-x86_64 | WARNING | Nov 16 2024 |
R-4.4-mac-aarch64 | WARNING | Nov 16 2024 |
R-4.3-win-x86_64 | WARNING | Nov 16 2024 |
R-4.3-mac-x86_64 | WARNING | Nov 16 2024 |
R-4.3-mac-aarch64 | WARNING | Nov 16 2024 |
Exports:adjustGRMcalcGRMCalcThresholdconvertBlockListcumsumPosdesign.ZEM3.cppEM3.generalEM3.linker.cppEMM.cppEMM1.cppEMM2.cppestNetworkestPhylogenesetmapgenetraitis.diagMAF.cutmake.fullmanhattanmanhattan.plusmanhattan2manhattan3modify.dataparallel.computeplotHaploNetworkplotPhyloTreeqqRGWAS.epistasisRGWAS.multisnpRGWAS.multisnp.interactionRGWAS.normalRGWAS.normal.interactionRGWAS.twostepRGWAS.twostep.episcore.calcscore.calc.epistasis.LRscore.calc.epistasis.LR.MCscore.calc.epistasis.scorescore.calc.epistasis.score.MCscore.calc.intscore.calc.int.MCscore.calc.LRscore.calc.LR.intscore.calc.LR.int.MCscore.calc.LR.MCscore.calc.MCscore.calc.scorescore.calc.score.MCscore.cppscore.linker.cppSeespectralG.cppSS_gwaswelcome_to_RGWAS
Dependencies:apebase64encbslibcachemcliclustercorpcordigestdplyrevaluateexpmfansifastmapfontawesomefsgastongenericsglueherehighrhtmltoolshtmlwidgetsjquerylibjsonliteknitrlatticelifecyclemagrittrMASSMatrixmemoisemimeMM4LMMnlmenloptrnumDerivoptimxpbmcapplypegaspillarpkgconfigpracmapurrrR.methodsS3R.ooR.utilsR6rappdirsRcppRcppArmadilloRcppEigenRcppGSLRcppParallelRcppZigguratRfastrlangrmarkdownrprojrootrrBLUPsassstringistringrtibbletidyselecttinytexutf8vctrswithrxfunyaml